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Physical Memory
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Storage (Memory)

● 24, 31 and 64 bit addressing

● Physical memory is addressed via three address types:

Type Description

Absolute Continuous 1:1 mapping of available storage.

Real A prefix for lowcore translates to absolute addresses.

Virtual DAT to real or absolute translation.
AR to real or absolute translation.
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Absolute / Real Storage

● Cores have dedicated 8k housekeeping area (lowcore).

● Contains old / new exception addresses, interrupt codes, etc.

● The prefix register specifies the absolute location of its lowcore.

– Accesses to 0 – 8k will be redirected to prefix location.

– Access to the prefix will be redirected to 0.
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Storage Keys
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Storage Keys

● Each 4k physical block has a key attached:

● Kept in not addressable memory.

● Manipulated through privileged instructions.

● Key ACC has to match with current ACC field in CPU status register for store.

● If F is set fetches also need a ACC match.

● R & C: Indicates that the block has been referenced / changed

ACC F CR

0 6
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Virtual Memory
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Dynamic Address Translation (DAT)

● Virtual address contains indexes into tables:

● Each entry has the location of the next lower table.

● A PTE designates a 4k block instead of a table.

● The last 12 bit are a byte index into the block.

● Entries are 8 bytes long.

RFX RSX RTX SGX PTX
11 bit

BTX

11 bit 11 bit 11 bit 8 bit 12 bit

0 63
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DAT - Table types

Name Designation Size Linux # of Entries

Page 4k pte 256

Segment 1M pmd 2048

Region 3 2G pud 2048

Region 2 4T p4d 2048

Region 1 8P pgd 2048

Sum: 16E Magic Number



KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 14

DAT - Address Space Control Element (ASCE)

Available ASCEs:
● Primary
● Secondary
● Home
● Access Registers (16)

Region or Segment Origin
0 31

RXG P S DT TL
32 64

Cont.
52

DT bits Type

11 R1

10 R2

01 R3

00 Segment

CRs 1,7,13
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The KVM / SIE side of things
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Start Interpretive Execution (SIE)

● Runs code in guest context
● Input: SIE control block (SCB) and memory designation
● KVM uses pageable-storage mode

● Multiple SCB formats and two levels of hardware virtualization support.
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Pageable storage mode

● Primary ASCE used for guest absolute → host real translation

● DAT management like other instructions:

– SIE DAT faults result in host exception / SIE exit

– DAT write protection can be used for COW and migration

– Invalidation instructions will remove SIE related TLB entries

● Guest can have own prefixing and DAT tables:

– Host virtual / guest absolute + prefixing→guest real

– Guest real + guest DAT → guest virtual
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GMAP

● The guest mapping code handles the guest’s address space.

● Mapping data stored in gmap struct.

● gmap_create(mm, memory limit)

Creating a gmap struct for the guest.

● gmap_map_segment(gmap, vmaddr, gaddr, size)

Creating mapping data to make faulting possible.

Maps QEMU virtual addresses to guest physical.
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GMAP – Struct

The GMAP struct contains all necessary information.

● mm:  parent mm space (QEMU)

● guest_to_host: radix tree with guest to host address translation

● host_to guest: radix tree with pointer to segment table entries

● asce: Guest ASCE used for SIE

● table: Pointer to first DAT table



KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 21

GMAP – Faulting

1. SIE DAT faults end up in host.

2. Host searches in guest to host translation for vmaddr and locates associated PMD 
entry.

3. Host creates intermediate guest tables between first and segment (PMD table).

4. Host copies QEMU PMD entry.

5. Host makes a host to guest entry pointing to the pmd entry. 

➔  Shared page tables between userspace and guest.
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GMAP – Memory view

QEMU GMAP

PMD PT PMD

PMD

PMD PT

PT

Memslot space

Qemu binary and libs

PMD PT PMD
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GMAP – Sharing implications

● Write protection tracks QEMU and the VM.

● One flush for QEMU and VM TLB entries.

● Linux PTE manipulation functions include VM management.

● Less page tables.

● But...
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Pitfall #1

For VMs to run, we need to switch
the page table size from 2k to 4k.

This used to be system wide!
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PGSTEs – Page-Status-Table Entries

PTE

PGSTE

+ 2048

Page Table (2k)

Page Status Table (2k)

+ 8 * n
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PGSTE

● What happens to a storage key if the PTE is invalid?

● Special VM related status area for each PTE

● Each entry: 2048 bytes offset to corresponding PTE, 8 byte long

● Stores:

– Storage key and host / guest R & C views

– Special lock for PTE and PGSTE

– Collaborative mm status and some software bits

● mm context has_pgste attribute, if attribute is set, pte manipulation functions take PGSTE 
into account.
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Solution #1

● New PT_S390_PGSTE ELF segment type.

● If kernel encounters said segment, it will set TIF_PGSTE and restart exec syscall.

● The mm context sets alloc_pgste when seeing the TIF bit and from thereon allocates 4k page tables 
for this process.

● QEMU has this special segment.
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Pitfall #2

A vCPU’s lowcore has to be 
accessible as long as it’s running.

How can we set write protection?
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Solution #2 – Notifiers

● PTEs mapping lowcore are marked with special PGSTE notifier bit.

● Before invalidation of a guest’s lowcore PTE a notifier triggers.

● The guest cpu is kicked out of SIE and waits on a lock until modification is done.

● After the modification, the cpu’s thread PROT_WRITEs the PTE and resets the notifier.

● The lowcore is heavily accessed.

● Fortunately invalidation is rare.
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Huge page support – Basics

● PMD tables are not shared, we copy the PMD.

➔ If QEMU PMD is flushed, we need a second GMAP flush.

➔ If we flush, we need to:

➔ Look up the GMAP pmd.

➔ Notify based on GMAP pmd software bits.

➔ Remove the GMAP pmd and re-fault.

● Fortunately huge pages are normally not flushed after fault-in.
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Huge page locking

Pitfall #3
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Huge page support – Locking

● Locking is done via two main locks:

– GMAP page_table_lock (one per GMAP)

– pte lock (unified for gmap and QEMU, table sharing)

● Before huge pages, each had a distinct job.

● page_table_lock was locked for everything but pte access.

● pte lock was used for pte manipulation / access
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Huge page support – Locking

● Huge page support blurs lines:

– Pmd lock for QEMU

– page_table_lock for all GMAP pmd accesses

● This one page_table_lock is a huge performance bottleneck.

➔ Proposal: Let’s take the QEMU pmd lock.

● Multiple locks → performance, also locking userspace, smaller deadlock risk
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Pitfall #4

Have you seen my storage keys?
I just put them in that unmapped area.
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Pitfall #4

● With huge pages, storage key instructions accessing an invalid last level table entry will fault.

● With hardware interpretation we only see the fault, fixup and re-drive execution.

● KVM emulation gets a lot more complicated.

● Mistakes were made, hosts did panic.
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Pitfall #5

What are these keys doing on my mint 
condition memory?



KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 38

Pitfall / Solution #5

● Before giving memory to a guest, old storage keys have to be wiped.

● New PTEs have a PGSTE storage key of 0

● Clearing is done when PTE becomes valid and key is automatically set from PGSTE.

● For huge pmds we have to track that within Linux.

● PG_arch_1 page flag is used as an indicator if clearing has already happened.



KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 39

Lessons learned while doing s390 memory management

1. Optimizations might bite you in the end.

2. Do not work through all edge cases, build a general solution.

3. For locking this is especially important.

4. Broken mm code might run successfully if you don’t put 100% load on it. Stress the host 
and guest simultaneously to find problems.
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Thank you
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Pitfall #6

PGSTE handling while switching between 
huge and normal pages.

A nightmare
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Solution #6

● We would need to synchronize switchover to and from page tables.

● PMD entry would need to be invalid for switch.

● When switching to huge page, we’d need to set storage keys from PGSTEs.

➔ Synchronization too hard for performance gain

➔ Easier to force KVM emulation of instructions accessing PGSTE.
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