
s390 KVM memory management…
and its pitfalls
—
Janosch Frank <frankja@de.ibm.com>

KVM Forum / October 25. 2018 / © 2018 IBM Corporation

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 2

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines

Corporation in the United States, other countries, or both.

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark

symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time

this information was published. Such trademarks may also be registered or common law trademarks in other

countries.

A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml

The following are trademarks or registered trademarks of other companies.

● Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 3

Contents

3

Physical memory
Address types & Lowcore
Storage Keys

Virtual Memory (DAT)
Tables
ASCEs

KVM
SIE & pageable storage mode
GMAP
PGSTEs and notifiers
Huge Pages

Lessons Learned

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 5

Physical Memory

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 6

Storage (Memory)

● 24, 31 and 64 bit addressing

● Physical memory is addressed via three address types:

Type Description

Absolute Continuous 1:1 mapping of available storage.

Real A prefix for lowcore translates to absolute addresses.

Virtual DAT to real or absolute translation.
AR to real or absolute translation.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 7

Absolute / Real Storage

● Cores have dedicated 8k housekeeping area (lowcore).

● Contains old / new exception addresses, interrupt codes, etc.

● The prefix register specifies the absolute location of its lowcore.

– Accesses to 0 – 8k will be redirected to prefix location.

– Access to the prefix will be redirected to 0.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 8

Storage Keys

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 9

Storage Keys

● Each 4k physical block has a key attached:

● Kept in not addressable memory.

● Manipulated through privileged instructions.

● Key ACC has to match with current ACC field in CPU status register for store.

● If F is set fetches also need a ACC match.

● R & C: Indicates that the block has been referenced / changed

ACC F CR

0 6

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 11

Virtual Memory

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 12

Dynamic Address Translation (DAT)

● Virtual address contains indexes into tables:

● Each entry has the location of the next lower table.

● A PTE designates a 4k block instead of a table.

● The last 12 bit are a byte index into the block.

● Entries are 8 bytes long.

RFX RSX RTX SGX PTX
11 bit

BTX

11 bit 11 bit 11 bit 8 bit 12 bit

0 63

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 13

DAT - Table types

Name Designation Size Linux # of Entries

Page 4k pte 256

Segment 1M pmd 2048

Region 3 2G pud 2048

Region 2 4T p4d 2048

Region 1 8P pgd 2048

Sum: 16E Magic Number

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 14

DAT - Address Space Control Element (ASCE)

Available ASCEs:
● Primary
● Secondary
● Home
● Access Registers (16)

Region or Segment Origin
0 31

RXG P S DT TL
32 64

Cont.
52

DT bits Type

11 R1

10 R2

01 R3

00 Segment

CRs 1,7,13

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 16

The KVM / SIE side of things

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 17

Start Interpretive Execution (SIE)

● Runs code in guest context
● Input: SIE control block (SCB) and memory designation
● KVM uses pageable-storage mode

● Multiple SCB formats and two levels of hardware virtualization support.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 18

Pageable storage mode

● Primary ASCE used for guest absolute → host real translation

● DAT management like other instructions:

– SIE DAT faults result in host exception / SIE exit

– DAT write protection can be used for COW and migration

– Invalidation instructions will remove SIE related TLB entries

● Guest can have own prefixing and DAT tables:

– Host virtual / guest absolute + prefixing→guest real

– Guest real + guest DAT → guest virtual

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 19

GMAP

● The guest mapping code handles the guest’s address space.

● Mapping data stored in gmap struct.

● gmap_create(mm, memory limit)

Creating a gmap struct for the guest.

● gmap_map_segment(gmap, vmaddr, gaddr, size)

Creating mapping data to make faulting possible.

Maps QEMU virtual addresses to guest physical.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 20

GMAP – Struct

The GMAP struct contains all necessary information.

● mm: parent mm space (QEMU)

● guest_to_host: radix tree with guest to host address translation

● host_to guest: radix tree with pointer to segment table entries

● asce: Guest ASCE used for SIE

● table: Pointer to first DAT table

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 21

GMAP – Faulting

1. SIE DAT faults end up in host.

2. Host searches in guest to host translation for vmaddr and locates associated PMD
entry.

3. Host creates intermediate guest tables between first and segment (PMD table).

4. Host copies QEMU PMD entry.

5. Host makes a host to guest entry pointing to the pmd entry.

➔ Shared page tables between userspace and guest.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 22

GMAP – Memory view

QEMU GMAP

PMD PT PMD

PMD

PMD PT

PT

Memslot space

Qemu binary and libs

PMD PT PMD

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 23

GMAP – Sharing implications

● Write protection tracks QEMU and the VM.

● One flush for QEMU and VM TLB entries.

● Linux PTE manipulation functions include VM management.

● Less page tables.

● But...

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 24

Pitfall #1

For VMs to run, we need to switch
the page table size from 2k to 4k.

This used to be system wide!

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 25

PGSTEs – Page-Status-Table Entries

PTE

PGSTE

+ 2048

Page Table (2k)

Page Status Table (2k)

+ 8 * n

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 26

PGSTE

● What happens to a storage key if the PTE is invalid?

● Special VM related status area for each PTE

● Each entry: 2048 bytes offset to corresponding PTE, 8 byte long

● Stores:

– Storage key and host / guest R & C views

– Special lock for PTE and PGSTE

– Collaborative mm status and some software bits

● mm context has_pgste attribute, if attribute is set, pte manipulation functions take PGSTE
into account.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 28

Solution #1

● New PT_S390_PGSTE ELF segment type.

● If kernel encounters said segment, it will set TIF_PGSTE and restart exec syscall.

● The mm context sets alloc_pgste when seeing the TIF bit and from thereon allocates 4k page tables
for this process.

● QEMU has this special segment.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 29

Pitfall #2

A vCPU’s lowcore has to be
accessible as long as it’s running.

How can we set write protection?

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 30

Solution #2 – Notifiers

● PTEs mapping lowcore are marked with special PGSTE notifier bit.

● Before invalidation of a guest’s lowcore PTE a notifier triggers.

● The guest cpu is kicked out of SIE and waits on a lock until modification is done.

● After the modification, the cpu’s thread PROT_WRITEs the PTE and resets the notifier.

● The lowcore is heavily accessed.

● Fortunately invalidation is rare.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 31

Huge page support – Basics

● PMD tables are not shared, we copy the PMD.

➔ If QEMU PMD is flushed, we need a second GMAP flush.

➔ If we flush, we need to:

➔ Look up the GMAP pmd.

➔ Notify based on GMAP pmd software bits.

➔ Remove the GMAP pmd and re-fault.

● Fortunately huge pages are normally not flushed after fault-in.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 32

Huge page locking

Pitfall #3

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 33

Huge page support – Locking

● Locking is done via two main locks:

– GMAP page_table_lock (one per GMAP)

– pte lock (unified for gmap and QEMU, table sharing)

● Before huge pages, each had a distinct job.

● page_table_lock was locked for everything but pte access.

● pte lock was used for pte manipulation / access

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 34

Huge page support – Locking

● Huge page support blurs lines:

– Pmd lock for QEMU

– page_table_lock for all GMAP pmd accesses

● This one page_table_lock is a huge performance bottleneck.

➔ Proposal: Let’s take the QEMU pmd lock.

● Multiple locks → performance, also locking userspace, smaller deadlock risk

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 35

Pitfall #4

Have you seen my storage keys?
I just put them in that unmapped area.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 36

Pitfall #4

● With huge pages, storage key instructions accessing an invalid last level table entry will fault.

● With hardware interpretation we only see the fault, fixup and re-drive execution.

● KVM emulation gets a lot more complicated.

● Mistakes were made, hosts did panic.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 37

Pitfall #5

What are these keys doing on my mint
condition memory?

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 38

Pitfall / Solution #5

● Before giving memory to a guest, old storage keys have to be wiped.

● New PTEs have a PGSTE storage key of 0

● Clearing is done when PTE becomes valid and key is automatically set from PGSTE.

● For huge pmds we have to track that within Linux.

● PG_arch_1 page flag is used as an indicator if clearing has already happened.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 39

Lessons learned while doing s390 memory management

1. Optimizations might bite you in the end.

2. Do not work through all edge cases, build a general solution.

3. For locking this is especially important.

4. Broken mm code might run successfully if you don’t put 100% load on it. Stress the host
and guest simultaneously to find problems.

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 40

Thank you

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 41

Pitfall #6

PGSTE handling while switching between
huge and normal pages.

A nightmare

KVM Forum 2018 / October 25, 2018 / © 2018 IBM Corporation 42

Solution #6

● We would need to synchronize switchover to and from page tables.

● PMD entry would need to be invalid for switch.

● When switching to huge page, we’d need to set storage keys from PGSTEs.

➔ Synchronization too hard for performance gain

➔ Easier to force KVM emulation of instructions accessing PGSTE.

	Slide 1
	trademarks
	Contents
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

